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The diversity of uncharacterized antibiotic
resistance genes can be predicted from
known gene variants—but not always
Johan Bengtsson-Palme1,2,3

Abstract

Background: Antibiotic resistance is considered one of the most urgent threats to modern healthcare, and the role
of the environment in resistance development is increasingly recognized. It is often assumed that the abundance
and diversity of known resistance genes are representative also for the non-characterized fraction of the resistome
in a given environment, but this assumption has not been verified. In this study, this hypothesis is tested, using the
resistance gene profiles of 1109 metagenomes from various environments.

Results: This study shows that the diversity and abundance of known antibiotic resistance genes can generally
predict the diversity and abundance of undescribed resistance genes. However, the extent of this predictability is
dependent on the type of environment investigated. Furthermore, it is shown that carefully selected small sets of
resistance genes can describe total resistance gene diversity remarkably well.

Conclusions: The results of this study suggest that knowledge gained from large-scale quantifications of known
resistance genes can be utilized as a proxy for unknown resistance factors. This is important for current and
proposed monitoring efforts for environmental antibiotic resistance and has implications for the design of risk
ranking strategies and the choices of measures and methods for describing resistance gene abundance and
diversity in the environment.
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Background
The looming antibiotic resistance crisis is recognized by
the WHO as one of the most urgent threats to modern
healthcare [1]. Although resistance is overwhelmingly a
clinical problem, much evidence points towards an envir-
onmental origin of many resistance genes [2–5]. Given the
enormous genetic diversity of environmental bacteria, this
should not be a surprise. Antibiotics are naturally occur-
ring in microbial communities [2], and some resistance
genes could have evolved as a defense system to anti-
microbial molecules secreted by other microbes [6]. Yet
other genes may not at all have had a resistance function
in natural settings, but only confer resistance when

overexpressed or in the face of anthropogenic antibiotic
selection. Together, these genes constitute the environ-
mental resistome, a term encompassing several types of
genes, including known clinical resistance genes, genes
closely homologous to known resistance genes which
likely confer the same resistance phenotypes, genes
already confirmed to have resistance functions as detected
by functional metagenomics screens but which do not
share homology to known resistance genes, as well as cur-
rently completely unknown resistance genes for which we
know neither the sequence nor the function [7, 8].
The recognition that the environment could serve as a

source for resistance genes to human pathogens has spurred
interest in investigating the distribution of resistance genes in
various environments to better understand this process [9–
14]. Large-scale quantification efforts of resistance, regardless
if they rely on PCR-based methods or DNA sequencing, are
by their nature reliant on sequence similarity, and therefore
limited to detect genes identical—or closely homologous—to
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known resistance genes [15]. However, numerous explorative
studies of the resistance traits present in natural bacterial
communities have revealed a vast range of resistance genes
not (yet) found in human pathogens and which are thus un-
likely to be annotated as resistance genes in sequence data-
bases [16–20]. Among the human health risks associated
with environmental antibiotic resistance [21], the arguably
most severe one is the recruitment of novel resistance factors
that are very rare or not yet present in human pathogens, be-
cause such genes could introduce new phenotypes to clinic-
ally relevant bacteria [22]. Since most of these resistance
factors are unknown, this risk is impossible to quantify dir-
ectly. Still, it may be possible to indirectly achieve a relative
risk ranking of environments, based on other information re-
garding resistance [23]. In this context, it would be beneficial
if we could use knowledge from large-scale quantification of
antibiotic resistance genes to infer properties of this yet unde-
scribed fraction of the environmental resistome. It is often as-
sumed that the abundance and diversity of known resistance
genes are representative also of the non-characterized frac-
tion of the resistome in a given environment [15]. The ele-
phant in the room, though, is whether this assumption is
valid. In this study, the hypothesis that the diversity and
abundance of known antibiotic resistance genes can predict
the diversity and/or abundance of their undescribed counter-
parts is tested, by quantifying resistance genes across 864
samples from various environments [13], and 245 samples
from the Tara Oceans project [24].

Results
Subsets of antibiotic resistance genes describe total gene
diversity
To test the ability of smaller sets of resistance genes to
accurately rank environmental samples in terms of total
resistance gene abundance and diversity, subsets of
genes were randomly sampled from a database of known
mobile antibiotic resistance genes, and their Spearman
correlations to the entire set of genes in the database
were calculated. In real-world scenarios, the genes in the
resistance gene database would contribute to total resist-
ance abundance, as well as genes not present in the
database. To simulate this scenario, the subsamples of
genes were included in the total dataset, and on average,
a subset containing only 60 randomly selected genes
(18% of the total database) could rank the resistance
gene abundance in environmental samples in a way that
correlated well (Spearman correlation > 0.8) with the
ranking achieved from the full database (Fig. 1a). In
terms of sample richness, only 50 genes (15% of the
database) were required to achieve a correlation better
than 0.8 to the ranking using the full database (Fig. 1b).
To achieve a richness correlation above 0.9, 100 genes
were required, and this value will be referred to as P0.9 =
100 in the following text, to allow for comparisons of

prediction performance. For abundance, the P0.9 was 110
across all environments.
To some degree, this correlation is due to the fact that

the most predictive genes are more likely to be present
in the subsample as the size of the subsample grows. To
compensate for this effect, a smaller subset was set aside
from the database and used to predict the abundance
and diversity of the remaining genes across all environ-
ments. In this case, both diversity and abundance esti-
mates plateaued at a correlation coefficient around 0.75,
which was reached at a subsample size of 50–60 resist-
ance genes (Fig. 1c, d).

Ranking of resistance gene diversity is valid across most
environmental types
Different environments rank very differently in terms of
resistance gene diversity and abundance [13], and to in-
vestigate if there was such an environmental bias in the
data, the same procedure was repeated within each en-
vironmental type (Fig. 2). Although no environment type
obtained a P0.9 below 110 (neither for abundance nor for
richness; Fig. 2a), there were several environments that
still retained high correlations using a subsample of 100
resistance genes (Fig. 2). The only instance with a Spear-
man correlation coefficient below 0.5 was the gastro-
intestinal sample abundance ranking (with the exception
of the mine samples which generated too few resistance
gene detections to allow for a correlation at 100 genes).
At the same time, the richness ranking of the gastro-
intestinal samples had a correlation above 0.75 using
subsamples of 100 genes.

Some diversity measures describe the total diversity of
resistance genes remarkably bad
It is unclear which diversity measures that would be most
appropriate for estimating total resistance gene diversity
from metagenomic sequencing [15]. However, testing the
prediction power of six different measures (total
abundance, gene richness, Shannon diversity, Simpson
diversity, the Chao1 estimator, and the ACE estimator), it
became clear that certain diversity measures are unsuitable
for the task (Additional file 1: Figure S1). Using richness as
a baseline (Additional file 1: Figure S1b), the Shannon index
performed reasonably well in ranking the environmental
samples, but was worse than the simpler richness measure
(Additional file 1: Figure S1c). In contrast, the Simpson
index showed low ranking performance even at a 100-gene
subsample (Additional file 1: Figure S1d). Finally, the Chao1
estimator performed very similarly to richness (Add-
itional file 1: Figure S1e), while the ACE estimator showed
large fluctuations at low subsample sizes, but plateaued at
about the same number of included genes as the richness
did (Additional file 1: Figure S1f).
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When the database was divided into a smaller sub-
sample prediction set and a larger “true result” set, the
Chao1 estimator still predicted the diversity about as well
as the gene richness did, while the Shannon index showed
slightly lower performance (Additional file 1: Figure S2).
The Simpson index, however, performed remarkably
poorly in this setting, not even reaching a correlation of
0.2 at a 100-gene subsample (Additional file 1: Figure
S2d). Similarly, the ACE estimator showed very large
fluctuations in its ranking performance, particularly at low
subsample sizes (Additional file 1: Figure S2f).

Small sets of selected resistance genes describe the total
diversity remarkably well
While it was clear from the above analysis that an incom-
plete set of resistance genes can predict the total abundance
and diversity reasonably well, it was also clear from the
underlying data that some genes contributed more to this
prediction performance than others. Therefore, genes were
systematically tested for combinations that yielded the
highest possible correlation to the results of the full data-
base, using as few genes as possible. Already by selecting a

single resistance gene—tet(Q)—a correlation to the ranks
obtained from total abundance of 0.80 was achieved, and
for richness, the correlation using only tet(Q) was 0.73
(Fig. 3a). Further addition of genes raised the correlation to
0.94 for abundance and 0.89 for richness using only ten
genes. Six out of these ten most predictive genes were tetra-
cycline resistance genes, which speaks to the ubiquity of
this resistance gene class across many environments. It
should be noted that this high degree of precision may par-
tially be due to the fact that certain genes are typical of cer-
tain environments, and that these ten genes may separate,
e.g., human gut and environmental resistomes exceptionally
well. To investigate the magnitude of this effect, the corre-
lations between these genes and total diversity and abun-
dance were investigated for all environments separately
(Fig. 4). This showed that the top ten predictive genes on
average had Spearman correlations to the entire resistance
gene database of 0.65 for richness and 0.76 for total abun-
dance. This is comparable to the predictive power of the 12
most representative (selected on the criterion of being one
of the ten most predictive resistance genes in at least three
environments), and substantially better than using the top

a b

c d

Fig. 1 Predictive ranking power of randomly selected subsets of resistance genes on the full database. a Resistance gene abundance predictions when
subsets were included in the full database. b Resistance gene richness predictions when subsets were included in the full database. c Abundance
predictions when subsets were removed from the full database. d Richness predictions when subsets were removed from the full database
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four most predictive genes or only the best gene—tet(Q)—
alone. However, for any given gene set, the variations
between environments were fairly large, but with the same
general tendency to achieve better predictions the more
genes that were included in the predictive subset
(Additional file 1: Figure S3). That said, in 13 of 14 environ-
ments, the ten most predictive genes were significantly pre-
dictive of richness, and they were predictive of total

abundance in 12 (Additional file 2: Table S1). Finally, the
performance of a set of commonly selected resistance genes
for qPCR-based studies of environmental resistance was in-
vestigated (Table 1; Additional file 3: Table S2). In general,
the top ten predictive genes identified in this study per-
formed slightly better than the ten most commonly used
genes for qPCR did (Figs. 3 and 4), although the latter,
when used together, were also significantly predictive for

a b

Fig. 3 Most predictive resistance genes. Cumulative prediction power, expressed as the Spearman correlation for abundance and richness
between the total database and the gene subset for the one to ten most predictive resistance genes in the full database (a), and a subset of
resistance genes commonly suggested for qPCR monitoring (b), cumulatively combined

a b

Fig. 2 Predictive ranking power across environments for both resistance gene abundance and diversity. a Average number of genes required to
obtain a Spearman correlation of 0.9 between the subset and the full resistance gene database. b Average Spearman correlation coefficient
obtained between a subset of 100 randomly selected genes and the full resistance gene database. The horizontal lines represent P0.9 and DB100
across all environments for abundance (solid lines) and richness (dotted lines)
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richness in 13 and abundance in 12 environments (Add-
itional file 2: Table S1). The top ten genes identified in this
study also performed slightly better than the genes sug-
gested for surveillance by Berendonk et al. [25]. Regardless,
a common feature among the most predictive genes was
that they included tet(Q), an aminoglycoside resistance gene
(aph(3)″-Ib or aph(6)-Id) and the blaTEM beta-lactamase
(Fig. 3), which could be considered a minimal subset of
genes to have a reasonable chance of describing resistance
gene diversity.

Known mobile resistance genes can predict the diversity
of recently discovered ones
Investigating the relationships between abundance and di-
versity obtained from subsets of resistance genes and the
entire database provides for controlled conditions in which
the true expected answer to the predictions made is known.
However, this type of evaluation does not fully reflect the
actual complexity of environmental antibiotic resistance. It
could be assumed, for example, that mobile resistance
genes have originated on bacterial chromosomes and that
the vast majority of resistance genes are not yet described
[8]. To provide an external validation of the findings based
on the Resqu database, which only contains resistance
genes identified on mobile genetic elements, the same sam-
ples were also analyzed for resistance genes using the
FARME database—a repository of genes from functional
metagenomics inserts providing antibiotic resistance. These
genes represent a set of true resistance genes with very dif-
ferent degree of similarity to the genes in the Resqu data-
base and form an ideal testing set for the predictions made
using the latter. Overall, predictions made from the entire

Fig. 4 Average Spearman correlation between environments for
different subsets of resistance genes. The tet(Q) gene represents the
most predictive resistance gene overall, the “most representative” set
are the genes that are found to be among the most predictive in at
least three environments, and the “top 10” and “top 4” sets
represent the ten and four most predictive resistance genes,
respectively. The “qPCR 10” set consists of ten of the most
commonly used genes in qPCR studies of environmental antibiotic
resistance, and the “qPCR classes” set represents a set where one
gene was selected from each antibiotic class among the most
common qPCR targets. The “Berendonk et al.” set represents genes
suggested for environmental monitoring by Berendonk et al. [25]

a b

Fig. 5 Predictive power of known resistance genes on novel ones. Relationships between the measurements made based on Resqu genes and
FARME genes, in terms of a total resistance gene abundance and b resistance gene richness
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Resqu database corresponded fairly well to the total resist-
ance gene abundance and richness obtained from the
FARME database (Fig. 5; Tables 1 and 2; Spearman correl-
ation 0.31 for richness, 0.62 for abundance). Interestingly,
those levels of correlations were reached already at a subset
size of 40 to 50 Resqu genes (Additional file 1: Figure S4).
Linear models based on Resqu were significantly predictive
in most environments (12/14), but their performance was
not equally good (Table 2). Particularly, the models were
not significantly predictive for either richness or abundance
in sediment and mine samples. The mine environmental
type had the least numbers of samples (seven), which may
explain the lack of significance, but 45 sediment samples
were included in this study, making small sample size a less
likely explanation in this case.
Next, the most predictive genes from the subset analysis

were investigated for their ability to predict the total abun-
dance and diversity of FARME resistance genes across envi-
ronments. These genes were significantly related to total

FARME richness and abundance in eight environments
(Additional file 4: Table S3), while the top four genes were
only predictive in six. The most representative subset of
genes was predictive of richness in nine environments and
of abundance in seven. This was comparable to the most
commonly used genes for qPCR used in combination.
However, across all environments, the commonly used
qPCR genes were not predictive of resistance gene richness,
while they were for total abundance (Additional file 4: Table
S3). It should be noted that using the tet(Q) gene alone was
not significantly predictive of total FARME richness (linear
model p = 0.276), but was related to resistance gene abun-
dance (p = 1.65 × 10−36). Similarly to what was shown in the
subset analysis, the Shannon and Simpson diversity indices
were poorer predictors of total diversity than the simpler
richness measure (Additional file 1: Figures S4 and S5). At
the same time, the Chao1 and ACE estimators based on
the top ten genes from the Resqu data did decent predic-
tions of total FARME richness, with particularly the Chao1

Table 1 Predictive performance measured as Spearman correlation for resistance genes commonly used for studies employing
qPCR on the richness and abundance of all Resqu and FARME genes

Abundance prediction Richness prediction Average
correlationGene name Resqu FARME Resqu FARME

tet(Q) 0.80 0.65 0.73 0.04 0.56

tet(O) 0.75 0.63 0.70 0.08 0.54

tet(W) 0.78 0.62 0.72 0.04 0.54

erm(F) * 0.57 0.44 0.60 0.08 0.42

erm(B) * 0.52 0.38 0.52 0.02 0.36

tet(M) * 0.56 0.23 0.53 − 0.11 0.30

sul2 * 0.30 0.24 0.39 0.22 0.29

aph(6)-Id ** 0.27 0.17 0.36 0.16 0.24

sul1 * 0.21 0.16 0.30 0.21 0.22

tet(G) 0.20 0.14 0.32 0.21 0.22

tet(A) 0.21 0.16 0.29 0.18 0.21

aac(6′)-Ib ** 0.14 0.13 0.23 0.26 0.19

tet(C) 0.18 0.10 0.25 0.20 0.18

tet(S) 0.15 0.11 0.23 0.15 0.16

sul3 0.13 0.11 0.16 0.08 0.12

qnrS * 0.12 0.10 0.13 0.07 0.10

tet(B) 0.19 0.11 0.19 − 0.06 0.10

blaTEM * 0.10 0.01 0.11 0.14 0.09

tet(E) 0.08 0.06 0.11 0.10 0.09

erm(C) 0.11 −0.05 0.19 − 0.05 0.05

blaCTX-M * 0.00 0.00 0.00 0.00 0.00

blaKPC ** 0.00 0.00 0.00 0.00 0.00

blaNDM ** 0.00 0.00 0.00 0.00 0.00

blaVIM ** 0.00 0.00 0.00 0.00 0.00

Genes with an asterisk were suggested by Berendonk et al. (2015) [25]. Genes with two asterisks were suggested by Berendonk et al. but are not commonly
employed in qPCR studies
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estimator showing a stronger relationship to FARME rich-
ness than Resqu richness did (Additional file 1: Figure S5).

Diversity and abundance relationships
Depending on how risks associated with antibiotic resist-
ance gene findings are prioritized, different types of envi-
ronments could be considered to be high-priority
environments for mitigation [21, 22, 25, 26]. One import-
ant consideration in risk prioritization efforts is whether
high abundance or high diversity of resistance genes in an
environment poses the highest risk to human health [8].
Previous research using a more limited set of samples has
suggested that environments with high abundance but
low diversity of resistance genes are rarely encountered,
while high diversity of resistance genes can be found with-
out them being particularly abundant [27]. To confirm

whether this holds true on a larger set of samples and en-
vironmental types, the abundance-diversity relationship
was investigated for both the Resqu and FARME databases
(Fig. 6). Interestingly, this analysis highlighted that for
known mobile resistance genes already circulating in path-
ogens, there does not seem to be a requirement for a sam-
ple to have a high diversity of resistance genes to also
show high abundances. For resistance genes identified
from functional metagenomics studies, i.e., mostly not de-
tected in human pathogens, the picture was somewhat dif-
ferent, with a clearer relation between high diversity and
higher abundance of resistance genes (Fig. 6b). Here, par-
ticularly the soil samples stood out as having richness as a
strong driver of abundance, while human-associated sam-
ples (gut, skin, oral, urogenital) showed no such relation-
ship. Notably, some of the samples from environments

Table 2 Adjusted p values for predictiveness of Resqu genes on the richness and abundance of FARME genes

All samples Animal-associated Sediment Wastewater/sludge Soil Water Air Mine

Richness 5.3E−24 0.023 0.43 7.9E−06 3.3E−15 0.018 0.58 0.96

Abundance 2.9E−71 5E−33 0.48 1.0E−05 1.2E−09 0.96 4.4E−05 0.105

*** * ** *** *

*** *** ** ** **

Gastrointestinal Oral Airways Urogenital Skin Pharmaceutical pollution Ocean water

Richness 0.00034 0.00032 0.00065 4.7E−11 0.00065 0.31 9.3E−07

Abundance 0.95 3.1E−19 1.1E−05 3.3E−12 0.58 1.3E−05 1.2E−09

** ** ** *** ** **

*** ** *** ** **

Asterisks denote significance levels; * : 0.05 > p > 0.01; ** : 0.01 > p > 1.0E-10; *** : 1.0E-10 > p

a b

Fig. 6 Relationships between abundance and diversity of resistance genes. a Abundance of known mobile resistance genes circulating in pathogens
(Resqu database) compared to their richness across samples. b Abundance of resistance genes not yet detected in pathogens (FARME database)
compared to their richness across samples. High-risk environments, i.e., high-richness or high-abundance settings, are indicated by dashed squares
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polluted by pharmaceutical production waste had mark-
edly higher abundance of resistance genes not yet been
found in human pathogens, indicating the potential these
environments have to mobilize such genes and make them
available to pathogens in the future [8].

Discussion
Calls for monitoring antibiotic resistance in the environ-
ment have been frequently made in the recent past [25,
28–34]. Such monitoring schemes are limited to target-
ing genes that are already known, and generally, a subset
of genes known to cause clinical problems are investi-
gated [25]. However, while the detection of genes already
circulating among human pathogens is indicative of en-
vironmental dissemination of resistant bacteria, this may
not always be the scenario that would be most relevant
to monitor. In comparison, the emergence of novel re-
sistance genes in pathogens may be the most severe
long-term consequence of environmental selection for
antibiotic resistance [8, 22]. This raises the question if
resistance genes found in clinically relevant bacteria can
serve as a proxy for the unknown resistance determi-
nants in environmental bacterial communities and could
therefore be used to rank environments in terms of risks
to human health, regardless of perspective. The results
of this study imply that recruitment of resistance genes
from the environment is essentially stochastic. There-
fore, given a sufficiently large subset of known resistance
genes, the total abundance and diversity of all resistance
determinants can be predicted and environments can be
ranked accurately, at least in most cases. Importantly,
the required size of the subset is largely determined by
how the set of genes to be investigated is selected. If se-
lected at random, at least 40–50 resistance genes were
needed to get a good predictive power for ranking, while
if the genes were selected systematically, a subset of only
three or four genes could predict total abundance and
diversity fairly well. This means that even if the currently
used resistance gene databases, such as CARD [35] and
ResFinder [36], lack a vast majority of the resistance
genes present in nature [15], the findings obtained using
them can still guide risk ranking based on metagenomic
sequencing data.
In terms of implications for risk management, this sug-

gests that environments with a high diversity and/or a high
total abundance of resistance genes are good first candi-
dates for mitigation efforts. This would highlight the im-
portance of environments subjected to pollution from
pharmaceutical production, as those were measured to con-
tain the largest numbers of resistance genes, both known
mobile and “novel” ones from the FARME database. The
latter ones are derived from functional metagenomics stud-
ies identifying resistance genes not yet encountered in path-
ogens and may thus reflect a future potential to be

recruited into human pathogens. Soil thereby seems to be
the most important source of future resistance genes of all
environments investigated. However, this could partially be
due to a database bias in FARME, as soil has been one of
the most common types of substrates used for functional
metagenomics studies. Hence, genes from typical soil bac-
teria may be over-represented in the database [37, 38]. In
any case, the results of this study again emphasize that the
main risks in terms of recruitment of resistance factors
from environmental reservoirs would be milieus exposed to
relevant levels of antibiotics [39], including those exposed
to waste from pharmaceutical production [9, 40], animal
agriculture [41, 42], and untreated sewage [43, 44]. That
said, monitoring of critically important resistance genes,
such as the NDM and VIM beta-lactamases and mcr-1, can
still be highly valuable for informing risk management re-
lated to dissemination of resistant bacteria through the en-
vironment, despite that these genes carry limited
information on total resistance gene diversity in environ-
mental settings.
A simpler and cheaper alternative to metagenomic se-

quencing often employed for monitoring the presence of
antibiotic resistance genes in the environment is qPCR.
The findings of this study have several important impli-
cations for qPCR-based monitoring efforts. First, the se-
lection of genes investigated is critical for how well
findings can be extrapolated from the tested gene set to
the overall total abundance and diversity of resistance
genes in a given environment. If genes are picked at ran-
dom (or without prior knowledge), at least 30–40 genes
would be required to rank environments with a reason-
able accuracy, while a careful selection of genes brings
this number down to about ten (Fig. 3). Below ten, the
predictive power becomes poorer, meaning that regard-
less of which resistance genes that are chosen, studies
employing single digit numbers of genes to infer resist-
ance gene diversity or abundance are rather likely to be
wrong. However, when a larger set of commonly used
targets for qPCR are used together, their predictive per-
formance is almost as good as when genes are selected
by observed predictive performance in this study (Fig. 3).
The targets proposed by Berendonk et al. [25] are almost
equally predictive, given that at least ten of them are
used together, even though their individual performances
are quite poor (Table 1). It should also be noted that the
higher the abundance and diversity of the investigated
set is in an environment, the more accurate is its predic-
tion of the total abundance and diversity.
In contrast, qPCR arrays utilizing hundreds of target

genes to estimate abundance and diversity [12, 41, 45]
are likely to be perfectly fitted for monitoring tasks.
Already for a subset of 40 genes, the prediction perform-
ance for ranking environments was good, and at 100
genes abundance and diversity were recaptured almost
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as well as when the entire database was used. These ar-
rays are less costly than performing a full shotgun meta-
genomics experiment. However, using metagenomics has
the upside of providing a plethora of additional data
[15], offering the potential to analyze the data for tax-
onomy [46], genes important for dealing with other
types of stressors such as biocides and metals [47, 48],
horizontal gene transfer capacity [49], or metabolic path-
ways [50]. Moreover, metagenomic sequencing enables
reanalysis of sequence data for new resistance genes dis-
covered after the samples were initially analyzed [51, 52],
enabling retrospective analysis of monitoring data. An
additional benefit of utilizing metagenomic sequencing
over qPCR arrays is the possibility to computationally
predict novel resistance genes from sequence data [53,
54], although this specific practice is quite unlikely to be
employed as part of monitoring schemes.
While smaller subsets of resistance genes are overall

predictive of total resistance gene abundance and diver-
sity, their prediction power is not equal across environ-
ments. For example, while most gene subsets performed
well in animal-associated environments, the variation in
prediction performance in wastewater/sludge samples
was substantial. Interestingly, the gene sets often used or
proposed for qPCR were better predictors of total abun-
dance in wastewater samples than the gene sets identi-
fied to be most predictive in this study. This was in
contrast to most other environments and likely reflects a
bias in where resistance gene abundances have been
studied the most [43]. Moreover, it is notable that while
the abundance and diversity of resistance genes in envi-
ronments exposed to pollution with pharmaceutical
waste were fairly predictable, the abundance of resist-
ance genes in the human gut was rather difficult to pre-
dict—much harder than predicting similar metrics in
animal-associated samples. Unfortunately, it seems that
the type of environment studied matters for the power
to extrapolate to the total abundance and diversity of re-
sistance genes and furthermore that it matters in a fairly
unpredictable way. This highlights the continued need
for further characterization of novel resistance factors
and investigations of a wide range of resistance genes
across diverse environments.
The most appropriate measure for approximating re-

sistance gene diversity has been debated, and there is
currently no clear consensus on which method that is
preferable [15]. This study shows very clearly that there
are some methods that should be ruled out, because
they render inaccurate predictions and perform poorly
in terms of ranking environments. For example, the
Simpson diversity index consistently showed poor per-
formance, particularly when Resqu data was used to esti-
mate the diversity of FARME genes. The Shannon index
performed relatively better, but there is still no reason to

select the Shannon index over normalized (rarefied)
richness of resistance genes. As shown before, the ACE
estimator fluctuates substantially compared to the other
diversity measures [15], while the Chao1 estimator more
consistently showed performance very similar to rich-
ness. In addition, Chao1 was slightly better at predicting
the total diversity from a small subset of genes. The bot-
tom line is that either richness or Chao1 could be used
with virtually the same ranking results, while the Shan-
non, Simpson, and ACE measures should clearly be
avoided for estimating resistance gene diversity.

Conclusions
This study shows that the diversity and abundance of known
antibiotic resistance genes can generally predict the diversity
and abundance of undescribed resistance genes, although to
what degree is dependent on the type of environment inves-
tigated and likely also many other parameters that were not
measured in this study. This implies that the recruitment of
novel antibiotic resistance genes from the environment to
human pathogens is essentially random. Therefore, when
ranking risks associated with antibiotic resistance in environ-
mental settings, the knowledge gained from large-scale quan-
tification of known resistance genes can be utilized as a
(sometimes coarse-grained) proxy for the unknown resist-
ance factors. Thus, milieus previously pointed out as
high-risk environments for resistance development and dis-
semination based on broad screens for resistance genes re-
main the most likely to be important, including aquaculture,
animal husbandry, discharges from antibiotic manufacturing,
and untreated sewage [2, 8, 28, 55–57]. Further attention
should probably be paid to antibiotic contaminated soils, as
soils seem to be a vast source of resistance genes not yet en-
countered in human pathogens, as has also been suggested
previously [4, 16, 58, 59]. Soil, however, is a globally present,
very diverse habitat with microbial composition varying with
biochemical properties and geographical gradients [60, 61],
setting practical barriers for mitigation efforts aside from
avoiding contamination of soils with antibiotics. The results
of this study can be used to guide monitoring efforts for en-
vironmental antibiotic resistance, to design risk ranking strat-
egies, and to choose appropriate measures and methods for
describing resistance gene abundance and diversity in the
environment.

Methods
Dataset and database selection
To obtain a large number of samples that had both been se-
quenced using the same methodology and had a coherent
environmental classification, this study utilized the datasets
selected by Pal et al. [13], with the addition of 245 samples
from the Tara Oceans project [24]. These 1109 samples were
all sequenced using Illumina technology and had a sequen-
cing depth covering at least 10 million reads per
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metagenome (Additional file 5: Table S4). As a database
representing well-known, mobile antibiotic resistance genes,
Resqu was selected (version 1.1; http://www.1928diagnos-
tics.com/resdb/ [9]). Resqu contains 3018 non-redundant
protein sequences divided into 325 resistance gene types, all
reported to have been horizontally transferred between at
least two different bacterial species and conferring a verified
resistance phenotype. This database was contrasted against
FARME [38], a repository of genes found on inserts con-
firmed to provide antibiotic resistance based on functional
metagenomics [62]. Some of these genes represent true re-
sistance genes (with different degree of similarity to the genes
in the Resqu database), forming an ideal testing set for the
predictions made based on subsets of genes. However, the
FARME database contains every gene found in the inserts
from functional metagenomics, and hence, many of the se-
quences in FARME are not actual resistance genes. To cir-
cumvent this problem, the database was filtered according to
the following. First, the protein sequences (26,253 in total)
and the HMM analysis table were downloaded from the
FARME website (http://staff.washington.edu/jwallace/farme/
download.html) on 2017-02-16. Then, only the proteins with
an annotated antibiotic resistance function in the HMM ana-
lysis table (column “Antibiotic Resistance”) were extracted
from the protein FASTA file (4432 sequences). These were
clustered into 90% identity clusters using Usearch [63] to re-
duce redundancy, resulting in 2612 non-redundant resist-
ance genes used for the rest of the study (Additional file 6).

Resistance gene quantification
To make all metagenomes comparable, every library was
randomly subsampled to 10 million reads using a cus-
tom Perl script. The datasets were analyzed similar to in
Pal et al. [13]. Each subsampled library was searched
against the Resqu and FARME databases using Usearch
(v8.0.1445) with a sequence identity threshold of 90%
(options “-usearch_global -id 0.9 -maxaccepts 1 -threads
16”). Hits were organized into resistance gene types ac-
cording to gene mapping files, and abundance matrices
of raw counts were constructed using metaxa2_dc [64].

Statistical analysis
All statistical analyses were carried out in R version 3.3.2
[65] with the additional packages vegan version 2.4-1 [66]
and gplots version 3.0.1 [67]. For each sample, “true” target
values were calculated for the sum of all resistance gene
counts (total abundance), the richness of resistance genes
(the number of different gene types found), the Shannon di-
versity index [68], the Simpson diversity index [69], the
Chao1 estimator [70], and the ACE estimator [71]. Next,
the database was subsampled to contain only a subset of
the resistance genes, and the same values were recomputed
for all samples. The values for the subsampled database

were compared to the corresponding values obtained using
the full database using the Spearman rank correlation. The
subsampling procedure was repeated 100 times, both for
the full dataset and for each environmental type separately.
Two measures were defined to describe prediction power:
the P0.9, which was defined as the smallest number of genes
needed to achieve a correlation above 0.9, and the DB100,
which was defined as the correlation coefficient obtained
using 100 resistance genes in the database.
To identify the most predictive subset of resistance

genes in the database, the gene with the best correlation
(average of richness and abundance correlations) to the
total database was selected and rerun in combination with
every gene in the database. The pair with the best correl-
ation was selected and again rerun in combination with
every gene in the database to find the best combination of
three. This procedure was repeated until the ten most pre-
dictive resistance genes had been identified, both in all
samples together and in each environmental type separ-
ately. This was compared to the correlations obtained by
pre-selected subsets of genes, e.g., those most commonly
used in qPCR studies of resistance in the environment
(Additional file 3: Table S2). The predictiveness of each
subset on the full database was assessed using a linear
model with the subset-derived values as explanatory vari-
ables. A subset was considered to be significantly predict-
ive when its Benjamini-Hochberg-adjusted [72] p value
for zero slope was below 0.05. Abundance values were
log-transformed before inclusion in the linear models.
Finally, the entire analysis was repeated using the re-

sults obtained from the FARME database as the “true”
expected result. The same measures (for FARME data)
were calculated for each sample, and Spearman rank
correlations to the results obtained from Resqu (above)
were investigated. The predictiveness of the full database
as well as the subsets of resistance genes were assessed
using linear models, as described above. The R scripts
used for the analysis are available in Additional file 7.

Additional files

Additional file 1: Figure S1. Predictive ranking power of randomly
selected subsets of resistance genes on the full database, when subsets
were included among the genes in the full database. A) Resistance gene
abundance. B) Resistance gene richness. C) Shannon diversity index. D)
Simpson diversity index. E) Chao1 estimator. F) ACE estimator. Figure S2.
Predictive ranking power of randomly selected subsets of resistance
genes on the full database, when subsets were excluded from the full
database. A) Resistance gene abundance. B) Resistance gene richness. C)
Shannon diversity index. D) Simpson diversity index. E) Chao1 estimator.
F) ACE estimator. Figure S3. Average Spearman correlation across
environments for different subsets of resistance genes. Figure S4.
Predictive ranking power of randomly selected subsets of resistance
genes in Resqu on the full FARME database. A) Resistance gene
abundance. B) Resistance gene richness. C) Shannon diversity index. D)
Simpson diversity index. E) Chao1 estimator. F) ACE estimator. Figure S5.
Relationships between the measurements made based on the ten most
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predictive resistance genes in Resqu and the total set of FARME genes, in
terms of A) total resistance gene abundance, B) resistance gene richness,
C) the Shannon diversity index, D) the Simpson diversity index, E) the
Chao1 estimator, and F) the ACE estimator. (PDF 693 kb)

Additional file 2: Table S1. Significant predictive power of different
subsets of resistance genes on known mobile antibiotic resistance genes
in Resqu. (XLSX 11 kb)

Additional file 3: Table S2. Commonly used target genes for qPCR-
based studies of resistance genes in the environments collected from the
literature. (XLSX 24 kb)

Additional file 4: Table S3. Significant predictive power of different
subsets of resistance genes on antibiotic resistance genes not yet
detected in pathogens (FARME database). (XLSX 11 kb)

Additional file 5: Table S4. Complete list of all datasets used for this
study. (XLSX 29 kb)

Additional file 6: The non-redundant resistance genes in the filtered
version of the FARME database used for this study. (FASTA 670 kb)

Additional file 7: The R scripts used for the analysis in this study. (ZIP 18 kb)
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